

Illuminating Massive Black Holes with White Dwarfs

Morgan MacLeod
University of California, Santa Cruz

in collaboration with:

Jacqueline Goldstein, James Guillochon, Johan Samsing, Dan Kasen, Stephan Rosswog, & Enrico Ramirez-Ruiz

Outline

This talk builds on the work of: (Rosswog+ 2008,2009), (Clausen+ 2011), (Haas+ 2012), (Scherbakov+ 2013), (Cheng+ 2013,2014), (Jonker+2013) and yesterday's talk by Thomas Wevers

Tidal disruption of stars by massive black holes

From fallback to accretion flare

Tidal disruption of stars by massive black holes

Direct swallowing of star by BH

High energy disruption signatures

The peak feeding rate in WD disruptions greatly exceeds the Eddington mass accretion rate, and that of MS TDEs:

$$\dot{M}_{\rm peak} \propto M_{\rm bh}^{-1/2} M_*^2 R_*^{-3/2}$$

These highly super-Edd. accretion flows can launch relativistic outflows which greatly outshine thermal accretion-disk emission

$$P_{\rm jet} = \epsilon \dot{M}c^2$$
$$\gg \epsilon \dot{M}_{\rm Edd}c^2$$

(e.g. yesterday's talk by A. Sadowski)

High energy disruption signatures

observer along the jet axis:

$$M_{
m bh} = 10^{4.5} M_{\odot}$$
:
 $L_{
m peak} \approx 10^{48} {
m erg s}^{-1}$
 $t_{
m peak} \approx 1 {
m h}$
 $t_{
m Edd} \approx 3 {
m months}$

High energy disruption & detection rates

(Given extrapolation of Mbh-sigma relaition...)

WD disruptions are a factor of ~100x less common than their main sequence counterparts.

High energy disruption & detection rates

WD disruptions are a factor of ~100x less common than their main sequence counterparts.

But their beamed emission is ~1000x more luminous

High energy disruption & detection rates

Detection with Swift

$$\dot{N}_{\rm gal} \sim 10^{-6} \text{ yr}^{-1}$$

$$n_{\rm gal} \approx 10^7 Gpc^{-3}$$

$$z < 1$$
:

$$\dot{N}_{swift} \approx 1500 f_{\rm beam} f_{\rm MBH} \, {\rm yr}^{-1}$$

$$\sim 15 \, {\rm yr}^{-1}$$

$$(f_{\rm beam} = f_{\rm MBH} = 0.1)$$

Hydrodynamics of WD compression

Ignition

How often?

Thermonuclear fraction ~1/6 of events

Ignition

Spectra & Doppler shifts: observer near orbital plane

 $L_{
m MIN}$

(line blanketing) red color

blueshifted

0

 $L_{
m MAX}$

blue color

redshifted

Optical detection with ZTF or LSST

ZTF [m_{thresh}=20.5] ~ 0.5 yr ⁻¹ LSST [m_{thresh}=25] ~ 240 yr ⁻¹

(MacLeod+ in prep)

The challenge of identification

High energy transients share phase space of emerging class of ULGRBs

Optical transients have similar photometric properties to other thermonuclear SNe

e.g. Phillips (1993) Width-Luminosity relation

Co-detection of beamed and thermonuclear transients

with
$$f_{beam}=0.1$$
,
 $LSST + Swift-like$
~ 30 f_{MBH} yr -1

detection or non-detection can constrain the MBH population & surrounding star cluster properties

Conclusions

- WD tidal disruption: an avenue to select IMBH-transients
- High energy signatures: jets & beamed emission from super-Edd feeding
- Optical counterparts: thermonuclear transients in deep encounters
- Multi-wavelength detections as an avenue to firmly identify transients

Detections *or* non-detections constrain the occurrence of MBHs <10⁵ msun surrounded by dense stellar clusters.

Thank you!